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Abstract

Modulation recognition is the process to which an intercepted signal is subjected

for the purpose of extracting a signature that reveals the modulation identity of the

signal. This technology has both military and commercial applications, but most

of the motivation for its development comes from the signal intelligence community.

Indeed, techniques that improve capabilities for intercepting and exploiting commu-

nication signals automatically are of increasing importance due to the rapid growth

in communication technologies.

This thesis proposes an approach for modulation classification using existing

features in a more efficient way. The Multi-Dimensional Classification Algorithm

(MDCA) treats features extracted from signals of interest as elements with irrelevant

identities, hence eliminating any dependence of the classifier on any particular feature.

This design enables the use of any number of features, and the MDCA algorithm

provides the capability to classify modulations in higher dimensions. The use of

multiple features requires an equal number of data dimensions, and thus classification

in as high a dimensional space as possible can improve final classification results.

Finally, the MDCA algorithm uses a relatively small number of simple operations,

which leads to a fast processing time.

Simulation results for the MDCA algorithm demonstrate good potential. In

particular, the MDCA consistently performed well (at SNR levels down to -10dB in

some cases) and in identifying more modulation types.
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multi-dimensional classification algorithm

for automatic modulation recognition

I. Introduction

1.1 Background

Modulation recognition is any signal processing or statistical analysis technique

that allows correct identification of the modulation type used in a communication sig-

nal. Such capability is desired by both military and commercial communities. Indeed,

the efficient use of available frequency bandwidth is increasingly needed due to the

ever tightening spectrum resources. To achieve high levels of efficiency, however, pre-

cise characterization of the channels and detailed information about signal presence

and its modulation type are paramount. Thus, Automatic Modulation Recognition

(AMR) allows the electronic warfare (EW) and signal intelligence (SIGINT) commu-

nities to better monitor the frequency spectrum environment. Several approaches to

produce a fully automated modulation recognition classifier have been devised, and

most are either neural network based or rely on some form of branching tree algo-

rithms. Despite the variety of design approaches already tried, none have resulted in

a robust engine that produces good classification results for low signal-to noise ratios

(SNR).

1.2 Problem Statement

Pattern recognition problems are best tackled by extracting good features from

the available variables. In modulation recognition the variables are the intercepted

signals, and the features are any statistical or spectral measurements made on the

signals. These features are then processed, based on their observed behavior for known

modulations, to estimate the modulation type. Unfortunately, no set of features

proposed in the AMR related literature has been shown to adequately characterize

1



all sets of modulation schemes. Furthermore, all the proposed AMR algorithms are

feature dependent, in that their processing workflow is designed for a specific set of

features. Devising new features is largely a product of time consuming trial and error,

and hence creating a new algorithm for existing features is not an optimal approach

once newer and better features are discovered.

All the existing AMR algorithms use multiple features, but their processing ap-

proach uses one feature at a time in a branching tree pattern. Such a one dimensional

design usually tends to fail whenever there is an overlap of measured features from

different modulations. This tendency increases as the signal to noise ratio decreases.

The goal of this research is to produce a feature independent and multi-dimensional

AMR algorithm.

1.3 Research Assumptions

This research makes the following assumptions:

1. The channel noise is modeled as additive white Gaussian noise (AWGN).

2. The AWGN power is adjusted to achieve the desired SNR level.

3. Only one signal is present in the radio frequency environment, unless stated

otherwise.

4. No multi-path reflections exist in the channel, i.e., direct line-of-sight path be-

tween transmitter and receiver is assumed.

5. The SNR level is determined at the receiver input

1.4 Research Scope

This research proposes an algorithm that works with any set of two or more fea-

tures. For a demonstration of the validity of the approach, the five features proposed

by Azzouz and Nandi in their Digitally Modulated Signal Recognition Algorithm

(DMRA) [1] are considered for the classification process. Eight digital modulation

schemes are used to measure the performance of the proposed algorithm:

2



• Binary Phase Shift Keying (BPSK)

• Quadrature Phase Shift Keying (QPSK)

• Binary Amplitude Shift Keying (ASK2)

• 4-ary Amplitude Shift Keying (ASK4)

• Binary Frequency Shift Keying (FSK2)

• 4-ary Frequency Shift Keying (FSK4)

• Quadrature Amplitude Modulation, square 16 (QAM16)

• Quadrature Amplitude Modulation, square 64 (QAM64)

1.5 Research Approach

This research is a follow-on to previous work conducted at AFIT and AFRL/SR.

Since a comprehensive evaluation of three existing commercial MRA algorithms [2]

and a modification of the DMRA algorithm to extend its range of classification [21]

were two major efforts performed at AFIT, the next logical next step is a new algo-

rithm. A difficulty was in determining if a totally new approach using signal processing

techniques never before tried in MRA, such as the Mellin transform as used in speech

recognition, would be appropriate or if some statistical pattern recognition tools would

be a better option. A decision was made to develop a statistical pattern recognizer

using the proven Fisher discriminant and Bayesian decision making concepts. With

an open architecture the proposed algorithm can use any features, statistical or signal

processing based, that produce a real measurement or even a statistical distribution.

Hence the research is focused on developing an intelligent way to maximize positive

classification by using AMR features already proposed in literature while remaining

flexible to incorporate any features that might be introduced in the future.

1.6 Materials and Equipment

All the simulated work was performed using Matlabr Version 7.0 with the Signal

Processing and Communication Toolboxes. The Matlabr simulations were run on a

3



home PC with a 3.0GHz Pentium D platform using either Windows XP or Centos 4.3

operating systems.

1.7 Thesis Organization

Chapter II provides a brief review of background information and previous MRA

approaches. The architecture of the proposed algorithm is described in Chapter III

along with its basic mathematical concepts. It also covers features previously intro-

duced by Azzouz and Nandi, since they constitute the main input to the proposed

algorithm. Chapter IV presents the design for the simulated testing of the algorithm

as well as the investigated modulations used in most of the simulations. Finally,

the results of the simulations are covered in Chaper V, where they are analyzed and

compared to the performance of the DMRA algorithm.
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II. Background

Modulation recognition is but one step that comes after detection and isola-

tion of a communication signal. In military applications AMR allows the exploitation

of uncooperative signals for which no or little prior knowledge is available. Ideally,

the AMR algorithm continuously tracks any changes in the modulation used by the

signal of interest. Commercially, one product concept that can take advantage of an

AMR capability is the software defined radio. Such a concept would not have the tra-

ditional communication overhead that comes with scheduling and handshaking, but

only if the radio can identify the parameters of the signal of interest correctly. Multi-

ple algorithms with different processing approaches have been proposed to achieve a

modulation recognition capability. So far the goal of a robust algorithm or a package

of algorithms offering the desired capability is still elusive.

Over almost three decades dozens of papers on the subject of the recognition

of digitally modulated communication signals have been published. Numerous ap-

proaches have been tried to develop fast and accurate algorithms for producing ac-

ceptable results in real world applications. However, an algorithm robust enough for

real world cases has not been demonstrated so far. Some of the published algorithms

are presented in this chapter to provide a historical overview, and briefly describe the

different approaches so far attempted.

2.1 The Liedtke Algorithm

As one of the first to address the modulation recognition problem, Liedtke [14]

focuses his effort on the classification of ASK2, FSK2, the Continuous Wave (CW),

and the Phase-Shift Keying modulations PSK2, PSK4, and PSK8. Liedtke’s approach

assumes an approximate knowledge of the center frequency and symbol rate of the

communication signal and also that sampling rate is an integer multiple of the symbol

rate. First, the bandwidth of the unknown signal is approximated using a bank of

Finite Impulse Response (FIR) filters. The signal is processed in parallel through

all the filters which have different bandwidths at the same center frequency. Then
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Figure 2.1: Diagram of Liedtke’s universal demodulator [14]
with timing recovery and feature extraction circuit.

the Universal Demodulator, a feature extractor, removes the carrier component of the

signal, thus converting it to near base-band, and extracts the amplitude, instantaneous

phase, and frequency features. Liedtke’s algorithm uses a branching tree classifier that

depends on five main features extracted from the signal:

• Amplitude variance of the extracted waveform

• Frequency variance of the extracted waveform

• Delta-phase histograms: the histogram of the phase differences between adjacent

symbols

• The amplitude histogram

• The instantaneous frequency histogram

Figure 2.1 shows a diagram of the universal demodulator circuit, which processes the

unknown signal as complex and automatically adjusts to the estimated bandwidth

of the signal to produce a timing recovery vector for synchronization purposes, thus

extracting the features. The complete classification flow is shown is Figure 2.2.

2.2 The Kim and Polydoros Algorithm

Kim and Polydoros [13] focus primarily on phase-based modulations such as

BPSK and QPSK and later even extended their approach to quadrature-amplitude

modulated signals QAM. Their method falls under the decision-theoretic approach,
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Figure 2.2: Flow Chart of Liedtke’s classification ap-
proach [14].
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Figure 2.3: Flow Chart of the Kim and Polydoros algo-
rithm [13].

which differs from pattern recognition schemes in that the classification rule is based

on a hypothesis (a discriminating test of a statistical description of the signal). Kim

and Polydoros craft three classifiers that use the complex envelop of the baseband

signals.

• Phase-based classifier: This classifier uses the histogram of phase differences

between adjacent symbols. In a high SNR level setup it is expected that the

number of lobes in the histogram equals the number of phases in the modulation.

Hence, the histogram generated from a BPSK has two lobes, and the histogram

of an MPSK has M lobes.
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• Square-law classifier: A special case of the Power-Law technique introduced by

DeSimio and Prescott [7], the square-law property (2 cos2 x = cos 2x + 1), it

generates a squared output signal with half the number of phases of the original

and can be used to isolate BPSK, as its square loses the phase signature. This

classifier is primarily used to differentiate between BPSK and QPSK modulated

signals.

• Quasi Log-Likelihood Ratio classifier: This classifier uses a Maximum Likelihood

(ML) ratio test developed from likelihood functionals of M-ary PSKs in an

AWGN environment.

2.3 The DeSimio and Prescott Algorithm

Prescott and DeSimio [7] introduce an interesting approach which consists of

multiplying feature vectors of the signal to be classified by predetermined weight

vectors of the modulation types the algorithm is capable of handling. The features

selected by DeSimio and Prescott are

• The mean and variance of the signal envelop

• The magnitude and spectral location of the two largest peaks in the spectrum

of the signal, which also yields information about the carrier frequency

• The spectrum magnitude of the squared and quadrupled signal at twice and

four times the carrier frequency

Using these extracted features in an Adaptive Linear Combiner (ALC) processor,

which is a Least Mean Square (LMS) based algorithm, a weighted vector descriptive

of each modulation is generated. Classification is determined by the weight vector

producing the largest product with the feature vector.

2.4 The Hsue and Soliman Algorithm

Hsue and Soliman [11] use the concept of zero-crossing [12] sampling to build

a modulation classifier for BPSK, QPSK, PSK8, FSK2, FSK4, and FSK8. First
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(a) (b)

Figure 2.4: DeSimio and Prescott’s algorithm [7] (a)The feature extraction process
(b) Top level diagram of the classification process.

demonstrated in modulation recognition by T.G. Callaghan, et al. [6] a zero-crossing

sampler records the time when the input signal crosses the zero volt level. The

amount of information about carrier frequency and phase transitions that a sequence

of zero-crossing points holds is substantial. But the zero-crossing method is sensitive

to noise. In an approach identical to Liedtke’s, Hsue and Soliman classify the received

signal by first separating FSK from single-tone (CW or MPSK), then making a final

decision using histograms of phase variations. Figure 2.5 shows a flow diagram of the

algorithm proposed by Hsue and Soliman.

2.5 The Azzouz and Nandi Algorithm

Azzouz and Nandi [1] introduce a feature based decision tree algorithm to clas-

sify ASK2, ASK4, FSK2, FSK4, BPSK and QPSK digitally modulated signals. The

features used in the algorithm are based on the standard deviations of instantaneous

phase, frequency, and amplitude of the modulated signal along with the power spectral

density amplitude. Azzouz and Nandi’s approach is a textbook example of feature-

based classifiers. A detailed description of the features they propose is reviewed in

Section 3.4.
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Figure 2.5: Flow Chart of Hsue and Soliman algorithm.
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Figure 2.6: Flow Chart of Azzouz and Nandy algorithm.

One of the weak points of the algorithm is that the nature of the decision-tree, as

shown in Figure 2.6 requires fixed threshold values, and since the features proposed

by the authors are SNR sensitive, the threshold values can only be valid for small

ranges of SNR. The architecture of the algorithm as shown in Figure 2.6, which is

designed for a SNR larger than 10dB, may not be appropriate for a smaller SNR even

if the threshold values are updated.

Nandi and Wong [22] proposed a Multi-Layer Perceptron (MLP) based classi-

fier using the same features introduced by Azzouz and Nandi along with statistical
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based features. The use of an Artificial Neural Network (ANN) platform proved

very successful. Indeed, from the published results [22] reported for convenience in

Table 2.1, the new classifier has impressive performance. The range of SNR levels

where classification is possible is much wider for an increased number of modulation

types (10 instead of 6). The MLP classifier used by Wong and Nandi is a two-layer,

unidirectional feed-forward network that is fed normalized features.

Table 2.1: Performance of Wong and Nandi’s ANN Classifier at different SNR
values [22]

Performance Signal to Noise Ratio
(%) -5dB 0dB 5dB 10dB 20dB

Training 90.4 98.1 99.3 99.9 100
Validation 89.4 98.0 99.3 99.8 100
Testing 89.4 97.9 99.2 99.9 100
Overall 89.7 98.0 99.3 99.9 100

2.6 The CRC Algorithm

Boudreau, et al. [5,8] from the Communication Research Center (CRC) extend

the algorithm proposed by Azzouz and Nandi while using the same decision-tree ap-

proach with features that are statistics of the instantaneous phase, frequency and

amplitude. However, for added accuracy and additional numbers of identifiable mod-

ulations, they incorporated power-law tests in their classifier. Figure 2.7 clearly show

the steps, where the number of peaks in the PSD of the raised signal to the powers

two or four are used in the decision process.

2.7 The CuHBC Algorithm

The Custom Higher-Order-Cyclostationarity-Based Classifier (CuHBC) [20] is

a commercial off the shelf (COTS) product. The software package is a hierarchical

classifier composed of several smaller algorithms each designed to classify a limited set

of modulations. Working in a sequential fashion, the software uses various proprietary

classification techniques, but it seems to extensively use spectral line classification [16].
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Figure 2.7: Flow Chart of the CRC algorithm [5].
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Figure 2.8: Flow Chart of the CuHBC algorithm.

This method, which is a power-law technique, takes advantage of the fact that phase

modulated signals produce spectral lines at even integer multiples of their carrier

frequency depending on the number of symbols (number of phases) when the signals

are raised to even powers. For example, a BPSK produces a spectral line at twice its

carrier frequency when squared and a line at four times the carrier frequency when

raised to the power of four. However, a QPSK signal will not produce a line until it

is quadrupled. Figure 2.9 shows examples of the PSD of a BPSK signal and a QPSK

signal.

2.8 The MSSA Algorithm

The Multiple-Signal Scene Analyzer(MSSA) [19] algorithm is also a commercial

product developed to detect and classify LPI radar waveforms. It is more appropriate

to describe the MSSA as software package that integrates multiple algorithms for

the purpose of the signal detection and isolation of the band of interest (BOI) and

classification of signal modulation type. The MSSA algorithm extensively uses the
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Figure 2.9: PSD of a BPSK (fc = 600Hz) and a QPSK (fc = 1000Hz) signal,
along with their squared and quadrupled versions (a) the PSD of the squared BPSK
signal produces lines at twice the carrier frequency (f = 1200Hz.) (b) QPSK does
not produce any lines until it is quadrupled, and does so at four times the carrier
frequency (f = 4000Hz).

16



cumulant [17] property of cyclostationary signals, or simply the Fourier properties of

sine wave when raised to the nth order. Figure 2.9 shows examples of that property

at n = 2 and n = 4. The MSSA algorithm uses a higher power of n = 6 [18] in

the pursuit of a better signal classifier. Figure 2.10 shows a top level diagram of the

MSSA.
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Figure 2.10: Flow Chart of the MSSA algorithm.
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III. The MDCA Algorithm

3.1 Introduction

Very few classification techniques can outperform simple linear classification

when good features are used. For this reason, one of the best methods to improve

the performance of Automatic Modulation Recognition AMR schemes is identifying

features that possess distinct signatures for the different modulations. Furthermore,

classification can be improved when it is performed in the space created by the consid-

ered features. Since producing new features is challenging and also beyond the scope

of this thesis work, the focus here is on the complementary approach of optimizing

the computational flow between the features extraction step and the classification

decision point.

The Multi-Dimensional Classification Algorithm (MDCA), the proposed algo-

rithm for this thesis, is an open architecture approach that uses multi-dimensional

classification for the AMR problem, and it is inherently independent of the features

selected to perform classification. The algorithm can use whatever features selected

by the user, and newer ones can later be added whenever they are available. Since

the processing flow is sequential for implementation (coding) purposes but parallel

in logic with an intrinsic back flow, there are no hard points that are feature depen-

dent and which steer the process of classification in one or another direction. Rather,

the parallelism of the algorithm produces a set of results that are objectively com-

bined for a final classification. In sharp contrast, the rigid one-dimensional branching

tree models presented by some researchers [1, 14, 20] are sequential decision points of

feature-dependent thresholds that are in specific order. Any alteration of the features

used requires an overhaul of these algorithms to cater to the new features.

3.2 Algorithm Core

Starting with a signal that is preprocessed, i.e., selected features are extracted

and its signal to noise ratio (SNR) is approximated, the MDCA algorithm uses the

signal features as coordinates of a point x in d-dimensional space (d = number of
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features) and sequentially performs three simple operations: projection, Mahalanobis

distance measure, and classification, as shown in Figure 3.1.

3.2.1 Projection. The d-coordinates of the signal of interest, where the

values along each dimension correspond to the values of the d features, are projected

onto one of the Fisher hyper-planes which are stored in the training database (the

training database is covered in detail in Chapter 4). The projection yields a new point

y with coordinates in either 2D or 3D space.

Projection is needed since the classification process is performed in a 2D or 3D

space, which is generally of lower dimension than the number of features. Five features

(d = 5), introduced by Azzouz and Nandi [1], which are discussed in Chapter 3.4, are

used throughout this thesis. Using these features stems from the fact that they are

used in Azzouz’s one-dimensional algorithm [1], which has a limited classification ca-

pability in the SNR range, and hence a comparison is justified. Limiting classification

to 2D and 3D spaces only is motivated by the fact that higher dimensions cannot be

represented graphically.

3.2.2 Distance measurement. Once a projection onto a hyper-plane is per-

formed, the Mahalanobis distances [3,9] between the projection point and the means

of all the modulations represented in that hyper-plane are measured. The approach

for calculating the Mahalanobis distance is detailed in Section 3.3.4.

3.2.3 Classification and Feedback. The magnitudes of the Mahalanobis

distances, measured in a hyper-plane, are ranked in ascending order. The ranking

of magnitudes produces a ranking of modulation likelihoods from the most likely to

the least likely. Since projections are first started in a hyper-plane that contains all

the possible modulations, the distributions of these modulations are tight and hence

the margins of errors are large, especially when the SNR level is low. Therefore, the

accuracy of classification which depends on Mahalanobis distance in a crowded hyper-

space is questionable. To minimize this uncertainty, the process is repeated from the
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Figure 3.1: Block diagram of the main processes used in the
MDCA algorithm. First, the preprocessed data in the form of
extracted features from the signal of interest are projected onto
predetermined Fisher hyper-planes. These planes are part of the
database generated in the training phase. The database is com-
posed of the planes representing every combination of possible
modulations and SNR levels between -10dB and 20dB. Then the
Mahalanobis distances [9] between the projection point and the
means of the modulations that define the considered hyper-plane
are measured. Finally, the Mahalanobis distances and their cor-
responding probabilities are stored and used to classify the signal
in the Fisher hyper-space. Depending on the number of itera-
tions selected by the user, the process is either stopped for a final
decision or repeated for further focus on specific modulations,
which is achieved using hyper-planes with fewer modulations.
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projection step, but with the projections performed on hyper-planes that have fewer

modulations while taking into consideration the ranking generated by the previous

projection(s). The ranking from the first projection dictates the modulations on

which attention is focused as the process proceeds to a second iteration. For example,

only the three most likely modulations from the first iteration are scrutinized further,

which is achieved by performing the second iteration of projections onto hyper-planes

defined by a smaller group of modulations (3 or 4 as opposed to the hyper-planes

defined by 8 modulations from the first iteration) with the condition that each group

contain at least one of the three modulations identified in the first projection. If there

is a need for more precision to distinguish between a number of modulations, the

process can be repeated and the projection performed onto hyper-planes with fewer

modulations. A classification example, with projection figures from each iteration, is

given in Chapter 4.3.2.

3.3 Multi-Dimensionality and MDCA Underlying Mathematical Con-

cepts

The multi-dimensionality of the MDCA algorithm stems from the number of

features used in the classification process. Unlike other AMR algorithms, where each

extracted feature is used independently at each decision point [1,7,11], MDCA con-

siders all the features at every decision point. There is only one classification decision

point at the very end of the process, and all other decision turns are soft in nature

and carry only a partial weight in the overall decision making process. Furthermore,

considering a multidimensional space that contains all the information about the sig-

nal of interest increases the possibility of correct classification. Traditional algorithms

allow for a reduction in dimensionality, however, such an advantage comes at the cost

of discarding sections of the main space in a perpendicular fashion along each dimen-

sion. The slicing of a space in such a fashion creates a multidimensional section of the

space with rectangular sides. Such a geometrical shape can, sometimes, box in the

distributions the of signal class, but can never tightly wrap its hyperquadric contours.
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For the purpose of demonstrating the functioning of the MDCA algorithm,

only classification in 2D and 3D spaces are presented in this thesis. The results of

the mathematical operations in such an environment can be displayed graphically.

The reduction in the dimensions of the problem are achieved through the use of the

Fisher Linear Discriminant (FLD) [10]. However, due to the wide variation in input

magnitudes of the features extracted from the signals of interest, the input data sets

are normalized to zero mean and unit variance.

3.3.1 Normalization. Before performing any processing of the features ex-

tracted from the input signals, they are normalized to zero mean and unit variance,

which is achieved by finding the means of all the points independently on each di-

mension, where every dimension corresponds to one of the i extracted features:

µi =
1

N

N
∑

t=1

xt,i, (3.1)

where, N denotes the total number of input signals. The new normalized coordinates

are

x̂t,i =
xt,i − µi

σi

, (3.2)

where xt,i is the tth component of one of the original extracted feature vectors, and

x̂t,i is its normalized version. The standard deviation σi is defined

σi =

√

√

√

√

1

N

N
∑

t=1

(xt,i − µi)
2
. (3.3)

Normalizing the input data to zero mean is equivalent to shifting the data points and

centering them around the axes origin, and the reduction to the unit variance is a

scaling transformation which reduces the spread of the input data. Figure 3.2 shows

the effect of normalizing raw input data to zero mean and a unit variance.
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(a)

(b) (c)

Figure 3.2: The effects of normalizing the input data to zero mean and unit variance.
(a) the input data of four classes with their unmodified coordinates. (b) the data
points are shifted so that the mean of the data equal to zero. (c) the magnitudes of
the original input data are scaled to achieve a variance of one.
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Figure 3.3: Projections of two-dimensional points from two
classes onto the Fisher line which best separate the two classes.

3.3.2 Fisher Linear Discriminant(FLD). The FLD is widely used for pat-

tern recognition. The usefulness of FLD stems from its use of a linear discriminant

that yields maximum separation between two or more classes when class elements are

projected onto the Fisher space from their original higher dimensional space. Figure

3.3 shows an example of projections of points from two classes in a two-dimensional

space onto the one-dimensional Fisher line. Projections from each class onto the Fisher

line fall in as a tight a group as possible. The level of discrimination is measured by

the Fisher ratio

J(w) =
wTSBw

wTSWw
(3.4)

the transformation matrix w, for which the FLD analysis finds a solution, maximizes

the ratio between the “between classes scatter matrix” SB and the “within classes

scatter matrix” SW . These scatter matrices in a c-class problem are

SB =
c
∑

i=1

Ni(µi − m)(µi − m)T (3.5)
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and

SW =
c
∑

i=1

Si (3.6)

where Ni is the number of input per class Ci. Also, the scatter matrix Si for each

class, the mean vector µi of each class, and the total mean vector m are [4]

Si =
∑

x∈Ci

(x − µi)(x − µi)
T , (3.7)

µi =
1

Ni

∑

x∈Di

x, (3.8)

and

m =
1

Nc

∑

x =
1

Nc

c
∑

i=1

Niµi, (3.9)

where, the total number Nc of samples x is the sum of the number Ni of samples in

each class. Maximizing the Fisher ratio follows the logic that the desired solution is

one where the means of the classes are well separated. The optimal w has columns

equal to the eigenvectors that correspond to the largest eigenvalues in the generalized

eigen-problem

SBw = λSWw. (3.10)

Once w is determined the projections from the original D-dimensional space to lower

d -dimensional space, where d < c and d < D, are accomplished by

y = wTx, (3.11)

where y is the projection vector.

Overall, the objective is to create a linear model that is trained with several sets,

each corresponding to the modulation to be classified, of hundreds of signal sequences

of known modulations. The Fisher plane is then found, which by definition produces

the widest spread between class constellations of projected points.
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For example, let Xn,1, Xn,2, Xn,3, Xn,4, Xn,5 be inputs to the model, where each

vector Xn,i is one of the five measured features for each of the n = 300 known signals

Sn:

X1,1 X1,2 X1,3 X1,4 X1,5 C1

X2,1 X2,2 X2,3 X2,4 X2,5 C1

...
...

...
...

...
...

X101,1 X101,2 X101,3 X101,4 X101,5 C2

...
...

...
...

...
...

X300,1 X300,2 X300,3 X300,4 X300,5 C3.

Here Ci is the class to which the signal belongs. The covariance matrix for each class

is

Σi =
1

Ni











X1,1 − mi,1 . . . X1,5 − mi,5

...
. . .

...

X100,1 − mi,1 . . . X100,5 − mi,5











T

·











X1,1 − mi,1 . . . X1,5 − mi,5

...
. . .

...

X100,1 − mi,1 . . . X100,5 − mi,5











.

where Ni is the number of inputs per class, in this case Ni = 100. The eigenvectors

and eigenvalues of the 5x5 matrix H are then found, where the eigenvectors for the

largest two eigenvalues define the 2D Fisher plane, and the largest three define the

3D Fisher hyper-plane.

H =

(

∑

i

NiΣi

)

−1

·

[

∑

i

Ni(mi − m)(mi −m)T

]

, (3.12)

Once the projections of the input points in the X1, X2, X3, X4, X5 space onto

the Fisher plane are determined, a Gaussian is fit to each distribution (since they are

assumed to be normal distributions):
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Figure 3.4: 2D and 3D Fisher planes for five classes.

p(x) =
e(−

1
2
(x−m)T

·Σ−1(x−m))

(2π)5/2 |Σ|1/2
. (3.13)

Figures 3.4and 3.5 show examples of the two and three dimensional Fisher

planes.

3.3.3 Multivariate normal densities. The traditional and popular multivari-

ate normal density function for each class with d random variables yi is

p(y) =
1

(2π)d/2 |Σ|1/2
exp

[

−
1

2
(y − µ)T Σ−1(y − µ)

]

, (3.14)

where Σ is the covariance matrix and µ is the mean vector and where

µ = E[y], (3.15)
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Figure 3.5: 2D and 3D Fisher planes for five classes (bird’s-eye
view). The view from this angle clearly shows the separation of
the classes as they are projected onto the 2D Fisher plane.
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Figure 3.6: Each data class is projected onto the 2D Fisher
plane and then is modeled as a Gaussian density to better de-
scribe the class distribution. The colored surfaces denote the
ranges where each distribution is dominant. Bayesian classifica-
tion uses this pattern to delineate the boundaries of maximum
likelihood regions. A test signal is classified to be of the type of
the class in which region the signal projection occurs.

Σ = E
[

(y − µ)(y − µ)T
]

. (3.16)

Figure 3.6 shows an example of a Gaussian fit to three classes that are projected onto

their two dimensional Fisher plane.

3.3.4 Mahalanobis Distance. The measure from a point x to the mean µ of

a multivariate density distribution with covariance Σ is

∆ =
√

(x − µ)TΣ−1(x − µ) (3.17)
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which is known as the Mahalanobis distance. This distance is taken from the exponent

of the general multivariate normal density (Equation 3.14), where in this case x and

µ are d-dimensional vectors, and Σ is a (d×d) matrix. Unlike the Euclidian distance,

the Mahalanobis distance takes into account the correlations of the data set, which

is important since in a multivariate distribution the densities expand in an uneven

fashion along different directions, thus having ellipsoidal shapes. The Mahalanobis

distance is simply the distance between the point x and the mean µ of a distribution

divided by the width of the ellipsoid in the direction of x.

3.4 Features

The five features introduced by Azzouz and Nandi [1] are chosen for the pattern

recognition linear model that interfaces with the classification algorithm proposed

here. These features provide a baseline for assessing the performance of the proposed

algorithm.

3.4.1 Maximum Power Spectral Density (MPSD). MPSD is the maximum

of the squared Fourier transform of the normalized amplitudes of the observed signals:

γmax =
max |DFT (acn)|

2

Ns
(3.18)

where DFT( ) is the Discrete Fourier Transform, Ns is the number of samples, f is

the frequency, and acn is the amplitude normalized to zero mean and unit variance,

i.e.,

acn =
|x|

ma
− 1, (3.19)

where x is the observed signal vector and ma is the average value of the instantaneous

amplitudes.
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3.4.2 Absolute Amplitude. This feature is the standard deviation of of

the “... absolute values of the normalized-centered instantaneous amplitude” for a

segment of the signal [1] and is

σAA =

√

√

√

√

1

Ns

(

Ns
∑

i=1

a2
cn(i)

)

−

(

1

Ns

Ns
∑

i=1

|acn(i)|

)2

. (3.20)

3.4.3 Absolute Phase. This feature is the standard deviation of the absolute

values of the “ centered non-linear component of the instantaneous phase evaluated

over the non-weak intervals of a signal segment” [1] and is

σAP =

√

√

√

√

√

1

C





∑

x(i)>at

φ2
NL(i)



−





1

C

∑

x(i)>at

|φNL(i)|





2

, (3.21)

where C is the number of samples that have non-linear components φNL of the in-

stantaneous phase φ. The threshold at eliminates signal segments most affected by

noise.

3.4.4 Direct phase. This feature is the standard deviation of the direct

phase also evaluated over the non-weak segment portion of the signal, and it is

σDP =

√

√

√

√

√

1

C





∑

x(i)>at

φ2
NL(i)



−





1

C

∑

x(i)>at

φNL(i)





2

. (3.22)

3.4.5 Absolute Frequency. This feature is the “absolute value of the normalized-

centered instantaneous frequency evaluated over the non-weak intervals of a signal

segment” [1] and is

σAF =

√

√

√

√

1

C

(

∑

x>at

f 2
NL

)

−

(

1

C

∑

x>at

|fNL|

)2

, (3.23)

where
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fN =
f − mf

rs

(3.24)

and f is the instantaneous frequency, mf is the instantaneous frequency average, and

rs is the sequence symbol rate. The symbols are the communication segments pro-

duced by the modulation process which transforms binary block of zeros and ones to

analog waveforms. Each observed signal is composed of a sequence of communication

symbols.

3.5 The Algorithm

As discussed in section 3.2 the main processes of the MDCA algorithm hap-

pen within its core, yet the flow information within the algorithm depends on other

essential modules.

3.5.1 The Database. All classifications require comparison of some sort.

The MDCA algorithm is no different, as it requires an extended library of information

about Fisher hyper-planes and the distributions they contain. The library is generated

during the training process, where thousands of sample signals with different instances

of noise and modulations are used. The information about each hyper-plane is stored

in a “.dat” file, and each file is referred to as a “page”. A page contains the w

matrix that defines the Fisher hyper-plane of one specific combination of modulations

(anywhere from two to eight modulations) as well as the mean vectors and covariance

matrices of distributions of the modulations. Furthermore, one SNR level is used

when generating a page. Therefore, there are seven pages for every combination at

the specific SNR levels of -10dB, -5dB, 0dB, 5dB, 10dB, 15dB, and 20dB. Ideally,

more SNR levels provide better accuracy, but since the testing of the algorithm is

performed at these levels, there is no need for a larger database. Finally, the database

itself is divided into a number of levels, and grouped into each level are pages with

the same number of modulations. The levels are stacked in such a way that the first

level always contains the pages with all modulations and each level after that has
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Figure 3.7: Flow diagram of the MDCA algorithm. Three
types of information pass between modules. First, the data
flow, which consists of hard values (SNR, extracted features,
coordinates, directional and covariance matrices, etc.) that are
passed from one module to another for the sole purpose of using
them in mathematical operations. Next, the decision informa-
tion flow, which is mainly composed of modulation categories.
This information is used in steering the data flow to decide on
the next comparisons. Finally, the control flow is simply in-
formation containing instructions to either do what the user
specifically requests (use 3D classification instead of 2D, have
the algorithm approximate SNR instead of the user providing
a value, etc.) or direct instructions from control modules that
decide what vectors and matrices to expedite to the algorithm
core for each iteration.
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pages with one fewer modulation each time. Hence, if the first level contains pages

with eight modulations, the fourth level contains pages with five modulations. Not all

levels are needed for the algorithm to work and produce good results. In this thesis

only levels one and six are used to test the performance of the MDCA algorithm.

3.5.2 SNR Approximation. The extracted features from a signal are em-

pirical data that also provide information about the SNR levels. Thus, an option is

added to automatically approximate the level of SNR. Such an option is useful since

it allows the algorithm to employ the best fitting pages in the classification process.

3.5.3 User Selected Paramaters. The MDCA takes a number of input

parameters from the user in the form of both choice and value inputs. The choices

the user can make are:

• The features to be used in the classification process

• Whether to allow the algorithm to approximate SNR level.

The types of values the user might add are

• The prior probabilities of modulations

• The SNR level

• The number of iterations the algorithm performs

• The levels from the database for each iteration
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IV. Methodology

4.1 Introduction

This thesis verifies the concept of the MDCA algorithm. Therefore, a complete

system is simulated (a system refers to a setup of a working algorithm in a life-

like environment) as shown in Figure 4.1. Two steps are necessary to generate final

statistics for correct classifications. First, a number of modulated signals are generated

and then used to create the database of hyper-planes, which is then used in the MDCA

algorithm as the reference DB. Second, new sets of signals are generated then run

through the MDCA algorithm for classification. The performance of the algorithm is

a tally of correct classifications to incorrect ones.

4.2 Experiment Design and Parameters

Simulating a working MDCA in a virtual environment is a necessary step for

demonstrating the multi-dimensional classification concept. Two sets of signals with

similar parameters are used. During the training phase the first set produces the

database of likely signals, while the second set is later used during the testing phase

to gauge the performance of the algorithm. The values of several signal parameters

are chosen within constrained intervals. These choices are made to mimic previous

work [1, 2] and also to keep the simulation work reasonably manageable.

Several parameters were considered during the generation of both the training

and test signals.

4.2.1 Modulation. Only eight communication modulation types are used,

since the main objective of this research is to show the usefulness of classification

in high dimensions (not thorough testing of the concept in every possible scenario).

Also, the choice of these modulations is made consistent with previous work [1] for

comparison purposes. The chosen modulations include BPSK, QPSK, ASK2, ASK4,

FSK2, FSK4, QAM16, and QAM64. With the exception of the QAM family of
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Figure 4.1: Experiment setup showing the two steps of (a)
generating the database used in the MDCA algorithm and (b)
testing of the algorithm.
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modulations, all can be represented by

SA(t) = Ac · A(t) · cos(2π(fc + f(t))t + φ(t) + θ0), (4.1)

where Ac denotes the carrier power, fc is the carrier frequency, θ0 is the initial phase,

and A(t), f(t) and φ(t) are the signal baseband amplitude, frequency, and phase

respectively. Using Euler’s formula

ejx = cos x + j sin x (4.2)

and ignoring the initial phase term, the modulated signal can also be represented by

SA(t) = Re{A(t)ejφ(t)ej(2π(f(t)+fc)t)} (4.3)

For the first type of modulation, phase shift keying or PSK, the information is

encoded within the phase of the signal, where each set of 2k -bit values in the digital

stream to be transmitted is represented by one of the k possible signals, each with a

specific phase:

SA(t) = Ac · cos(2πfct + φ(t)) (4.4)

Figure 4.2 and Fig. 4.3 show one example each of the phase shift keying modulations

BPSK and QPSK.

For amplitude shift keying or ASK, the information is amplitude encoded during

modulation, and therefore the amplitude term A(t) toggles between predetermined

constant values, but no phase information is encoded in the signal. Function ( 4.1)

then reduces to

SA(t) = Ac · A(t) · cos(2πfct). (4.5)

Examples of the two amplitude shift keying modulations (ASK2 and ASK4) are shown

in Figure 4.2 and Figure 4.3.
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Figure 4.2: BPSK modulation (a) amplitude, phase, and spectrum representations.
(b) scatter plot.
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Figure 4.3: QPSK modulation(a) amplitude, phase, and spectrum representations.
(b) scatter plot.
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Figure 4.4: ASK2 modulation (a) amplitude, phase, and spectrum representations.
(b) scatter plot.
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Figure 4.5: ASK4 modulation (a) amplitude, phase, and spectrum representations.
(b) scatter plot.
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The frequency shift keying FSK modulation, as the its name suggests, uses

different frequencies for each symbol representation:

SA(t) = Ac · cos(2π(fc + f(t))t + θ0) (4.6)

Examples of FSK modulated signals are shown in Figure 4.6 and Fig. 4.7. Finally,
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Figure 4.6: FSK2 modulation (a) amplitude, phase, and spectrum representations.
(b) scatter plot.

QAM is coded both in phase and amplitude, but not in frequency so that f(t) = 0:

SA(t) = I(t) · cos(2πfct) + Q(t) · sin(2πfct). (4.7)

This equation is an alternate representation of (Equation 4.1) and is derived from

(Equation 4.3), which is also

SA(t) = [I(t) + jQ(t)] ej(2πfct), (4.8)

where

I(t) + jQ(t) = A(t)ejφ(t) (4.9)
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Figure 4.7: FSK4 modulation (a) amplitude, phase, and spectrum representations.
(b) scatter plot.

This representation is refered to as the in-phase (I) and quadrature-phase (Q) com-

ponents of the signal.

4.2.2 Number of Symbols Nsym. Based on previous research, the number

of communication symbols in the classified signal is a critical parameter that defines

the performance of most existing AMR algorithms. This dependence stems from

the relation between the number of symbols and the sampling time of the signal.

Although several algorithms use thousands of communication symbols per classified

signal, in this research only 40 symbols per signal are used. Indeed, experimenting

with different sampling rates and number of symbols reveal that fewer symbols are

needed if a signal is over-sampled (used 29kHz sampling rate which equates to 15

times Nyquist rate or more.) This property is dependent on the features considered

for the MDCA algorithm.

4.2.3 Carrier Frequency fc. All the frequencies are in the near-baseband

range from 200Hz to 2000Hz in 100Hz increments.
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Figure 4.8: QAM16 modulation (a) amplitude, phase, and spectrum representa-
tions. (b) scatter plot.
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Figure 4.9: QAM64 (a) amplitude, phase, and spectrum representations. (b) scatter
plot.
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4.2.4 Signal-to-Noise Ratio(SNR). The SNR level is by far the most critical

of all parameters, as step variations in its values can cause significant changes in the

values of the features extracted from any modulated signal. The signal-to-noise ratio

is defined as the ratio of the signal power to the noise power

SNR =
Psignal

Pnoise
=

(

Asignal

Anoise

)2

, (4.10)

where A is the root mean square (RMS) amplitude. Due to the wide dynamic range of

the considered signals, the SNR levels are measured in decibels at the receiver input.

SNR[dB] = 10 log10

(

Psignal

Pnoise

)

(4.11)

In this research only a limited number of SNR values are considered. Additive white

Gaussian noise (AWGN), with varying power levels is then added to the generated

signals to achieve SNR levels equal to -10dB, -5dB, 0dB, 5dB, 10dB, 15dB, and

20dB are the targeted values. However, due to the randomness of the added noise the

actual measured SNR values randomly hover around ±1dB from the desired values.

Furthermore, every signal used in generating the database or during the testing phase

is composed of a modulated sequence to which a unique noise instance is added. Table

4.1 summarizes the parameters in the signals used to generate the database.

Table 4.1: Signals used to generate the Database
Modulations fc(Hz) SNR(dB) Total
BPSK 1400
QPSK 1400
FSK2 100 -10 1400
FSK4 to to 1400
ASK2 2000 20 1400
ASK4 (100Hz increments) (5dB increments) 1400
QAM16 1400
QAM64 1400
Grand Total 11200
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4.3 Simulation Overview

The simulation process is comprised of two main steps, database generation and

classification. These steps and performance measurement are overviewed here.

4.3.1 Database Generation. The MDCA algorithm is a primitive pattern

recognition concept, for it requires training in all the environments in which it might

be used as a classification tool. The product of MDCA training process is a database

containing information on the behavior of modulated signals in specific environments.

The environment can be a simple AWGN channel with a single signal present or, for

example, a fading/multi-path channel with third party interferers, but for the purpose

of this research only the first case is considered. The database is therefore a collection

of user defined scenarios in which classification is to take place. The central element of

the MDCA database is a “page”, which is simply a “.dat” file (“.mat” for MATLAB)

containing the following information:

• Modulation: The name of the modulations used to generate the page

• SNR: The level of the modulated signals used to generate the page. Only one

SNR level is allowed per page.

• Projection matrix: The matrix of the Fisher plane defined by the signals

considered for the page

• Mean vector: The mean of the normal distribution of each modulation in the

Fisher plane

• Covariance matrix: The covariance of the distribution of each modulation in

the Fisher plane

Since each page is defined by its “rank”, or the number of modulations, the

database is organized by grouping in “levels” all pages of equal rank. An MDCA

algorithm requires a database of at least two levels. The user decides on the number

and type of levels and therefore which to generate for the training phase. Here only

two levels are used. The first consists of seven eight-modulation pages, one for each
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(a)

(b)

Figure 4.10: Example of the content of a page. Here a MATLAB import wizard
shows the content of the page “FSK2 page with ASK4 FSK4.mat.” From the descrip-
tive file title, this page contains the Fisher plane described by the three modulations
FSK2, FSK4, and ASK4. Here (a) containsmatrix “modulation”, along with the SNR
level and other information used in generating the page, (b) contains the “vector”,
which is the projection matrix of the plane as well as the projection “coordinates” of
the data used in generating the plane.
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Figure 4.11: Example of a 2D first level page of rank = 8
with SNR = 20dB. The projection matrix defines the plane, and
covariance matrices and mean vectors define the ellipses. Also
shown are the projections of training data used in generating
this 2D Fisher hyper-plane. The ellipses correspond to the equal
probability contours for each distribution that enclose, 87.5% of
the normal distribution density.

SNR value, and the second consists of all possible combinations of three-modulations

at every SNR value. Figure 4.11 and Figure 4.12 show visual representations of the

information contained in a first level “page”, plus the projections of the signals (each

point represents a signal) used in its generation. The two representations are in the

2D and 3D Fisher hyper-planes generated by the data. The MDCA algorithm is an

intelligent classifier capable of choosing the best information from its database while

classifying a signal, reviewing its choices, and adjusting for discrepancies.
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Figure 4.12: Example of a 3D first level page, with SNR =
20dB and rank = 8, along with projections of training data used
to generate this 3D Fisher hyper-plane.
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Figure 4.13: Example of a 3D second level page with SNR =
20dB and rank = 3, along with the projections of training data
used to generate this 3D Fisher hyper-plane.
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4.3.2 Classification Process and Performance Measurement. The simulation

of a working MDCA algorithm in a virtual environment is conducted using two hun-

dred signals per modulation per SNR level for a total of 11,200 signals. Classification

is performed on one signal at a time. First the five features described in Section 2.2

are extracted from the signal. These features are used as coordinates of a point, which

is then projected onto the first level Fisher hyper-plane with the most appropriate

SNR value with dimension (2D or 3D) chosen by the user. Figure 4.14 shows the

projection point of an example test signal (measured SNR = 15.3 dB) onto the most

appropriate first level page (8 modulations Fisher plane and SNR = 15dB.) Next, the

Mahalanobis distances between the projection point and the mean of each of the eight

distributions are measured. The smallest three Mahalanobis Distances correspond to

the three most likely modulations to which one of the test signal might belong. The

results of the projection on the first level page are thus, three ranked modulations.

In the second level projection step the same features extracted from the test

signal are now projected onto three groups of pages. Each group consists of pages

containing at least one of the three most likely modulations identified in the previous

step, and each page is a combination of three modulations from the eight. In contrast

to the first level step in which only one page is used, the second level step involves

projections onto 63 pages (21 per group) because for every SNR level there is only one

page of rank eight and C8
3 = 56 pages of rank 3, of which only 21 consistently include a

given modulation. Figures 4.15, 4.16 and 4.17 show six examples of the 63 projections.

The purpose of the second level step is to compare the test signal to all modulations

in a restricted and biased environment. The bias is in favor of the three most likely

modulations from step one, and the restriction is to the presence of fewer (only 3)

modulations per page. These limitations produce a “zoom in effect” which, due to

the better separation between the normal distributions in the 3-modulations Fisher

planes, produces a better approximation of the test signal. Since all the pages in each

group contain one of the three modulations identified in the first step, projecting the

test signal on the pages of a group is similar to comparing the modulation defining
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Figure 4.14: Projection of a test signal onto the 3D Fisher
hyper-plane with all eight modulations and the corresponding
estimated SNR level.

the group to all other modulations versus the actual modulation of the test signal.

Thus, the Mahalanobis distances are measured and ranked for each projection. The

modulation that performs best within its group is declared the “winner”. In the

case of a tie between two modulations, the pages containing both are used for a final

arbitration. Figure 4.18 shows a flow diagram overview of the MDCA algorithm as

implemented here.

Once the MDCA algorithm produces a result, the classification generated for

each signal is compared to its actual identity and the answer is recorded as

• Hit: for a correct classification

• Miss: for an incorrect classification

• Near Hit: if the algorithm declares the correct class as second most likely
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(a) (b)

Figure 4.15: Two examples of the projection of a test signal onto second level 3D
Fisher hyper-planes of rank 3. The planes are defined by the first choice “BPSK” as
defined in the first level projection.

(a) (b)

Figure 4.16: Two examples of the projection of a test signal onto second level 3D
Fisher hyper-planes of rank 3. The planes are defined by the second choice “QAM64”
as defined in the first level projection.

52



(a) (b)

Figure 4.17: Two examples of the projection of a test signal onto second level 3D
Fisher hyper-planes of rank 3. The planes are defined by the third choice “QAM16”
as defined in the first level projection.
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Figure 4.18: Flow diagram of classification of a test signal as
performed in a fixed SNR level environment.
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A complete tally of the results of all simulation runs is used for assessing the perfor-

mance of the MCDA algorithm.

4.4 SNR Estimation

As shown in the previous sections, the MDCA algorithm requires a good database

of well organized (SNR/Modulations) libraries. However, the proper use of the

database requires the knowledge of the SNR level of the signal to be classified. This

requirement stems from the fact that the noise level affects the values of the features

extracted from a modulated signal. Figures 4.19 to Fig. 4.22 show changes in the

values of four features with respect to SNR level.
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Figure 4.19: Changes in the Absolute Frequency feature with
respect to SNR values.

Thus, the pages describing an identical group of modulations at different SNR

levels can be dramatically different from one another. Figure 4.23 contains four vi-
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spect to SNR values.
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sualizations of pages defined by the same group of four modulations (ASK2, ASK4,

FSK4 and QM16) at four different SNR levels 15dB, 10dB, 5dB, and -5dB.

Since the knowledge of SNR is not always available to the user, a simple method

using some of the same features extracted for classification purposes can produce an

adequate approximation of the SNR level. Each extracted feature is compared to

a series of threshold values which determines the SNR interval to which it belongs.

By stacking the intervals produced from each feature, a final and narrower interval

is produced. The range of the final interval may hold no more than one of the SNR

levels considered in the simulation. If not, the lowest SNR level that fits in the interval

range is used for the classification that follows.

Only Absolute Frequency, Absolute Phase, Absolute Amplitude and Direct Phase

features are used in the SNR estimator. The processing of each feature produces an

SNR likelihood interval. Stacking all the likelihood intervals reveals the estimated

SNR value of the signal being tested. Figure 4.24 shows a top level diagram of the

approach implemented to estimate the SNR level of the test signal. As an example,

the feature values extracted from a test signal, which happen to be a BPSK signal at

SNR = −5dB, are:

Gamma max = 3.284354e+000

Absolute Phase = 1.030133e+000

Direct Phase = 1.874272e+000

Absolute Amplitude = 3.030919e-001

Absolute Frequency = 9.842693e+001

Table 4.2 shows the ranges within which each of the four extracted feature fall, and

the overlap of all ranges.
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(a) (b)

(c) (d)

Figure 4.23: The SNR level of signals affect the values of extracted features, and
hence the Fisher planes of a set of modulations changes as SNR changes. Here the
Fisher planes of a group of four modulations are shown at four SNR levels (a) 15dB.
(b) 10dB. (c) 5dB. (d) -5dB.
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Figure 4.24: Diagram of the SNR estimation method. Each of
the four features is input to a distinct branching tree (T) which
then produces a (1x7) vector of ones and zeros corresponding
to the seven SNR regions. The ones indicate that the given
feature value is within the region, the zeros indicate the opposite.
Multiplying the four output vectors of the four branching trees
produces the desired overlap. The Matlabr code for each of the
four branching trees is provided in Appendix 2.
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Table 4.2: Example of SNR level estimation of a signal
SNR range −10dB −5dB 0dB 5dB 10dB 15dB 20dB

Absolute Frequency X X - - - - -
Absolute Phase - X X X X X X

Absolute Amplitude - X X - - - -
Direct Phase - X X X X X X

Final Range - X - - - - -
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V. Results and Analysis

This chapter outlines the simulation results of the MDCA test example as

introduced in Chapter 4. The performances of the SNR estimator and that of the

MDCA classifier are simulated separately. The simulation of the MDCA classifier is

conducted with assumed knowledge of the SNR level. After Section 5.3 the results

of a simulation of MDCA with SNR estimation are introduced and discussed. The

verification process is considered in this chapter rather than in Chapter 4 because the

review of the results produced by the MDCA algorithm is more of a subjective process

than an objective one. Indeed, the decision to accept the result of the algorithm or

to conduct a rerun depends entirely on the choices made by the user during the

training phase. The database generated during the training phase provide detailed

information on the behavior of modulations when compared to one another in a

restricted environment. A good analysis of such behavior (locations, and collisions of

the constellations representing the modulations) assesses the reliability of the answer

provided by the MDCA algorithm, and hence if there is a need for a classification

rerun.

5.1 Results

The results of the simulation of the SNR estimation module and the classification

algorithm are presented in this section. First, the performance of the SNR estimation

module is presented for signals of unknown modulations. Then, the results of the

simulations of the MDCA algorithm with SNR levels known are given, followed by

the simulation results of the algorithm where the SNR levels are estimated.

5.1.1 SNR Estimation. Tables 5.1 through 5.8 show the results of SNR level

estimation for each of the eight modulations considered here.

There are two main points to observe from the results in Tables 5.1 to 5.8:
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Table 5.1: SNR estimation of signals modulated with FSK2 modulation

Simulated Deduced SNR level (dB)
SNR level (dB) -10 -5 0 5 10 15 20

-10 183 17
-5 32 168

0 200

5 190

10 198 2
15 200

20 4 196

Table 5.2: SNR estimation of signals modulated with FSK4 modulation

Simulated Deduced SNR level(dB)
SNR level (dB) -10 -5 0 5 10 15 20

-10 183 17
-5 21 176

0 200

5 191

10 167 3
15 184

20 182

Table 5.3: SNR estimation of signals modulated with ASK2 modulation

Simulated Deduced SNR level (dB)
SNR level (dB) -10 -5 0 5 10 15 20

-10 184 16
-5 1 179

0 175

5 166 4
10 178 7
15 196 1
20 7 192
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Table 5.4: SNR estimation of signals modulated with ASK4 modulation

Simulated Deduced SNR level (dB)
SNR level (dB) -10 -5 0 5 10 15 20

-10 178 21
-5 190

0 190

5 144 38
10 169 9
15 170 8
20 7 182

Table 5.5: SNR estimation of signals modulated with BPSK modulation

Simulated Deduced SNR level (dB)
SNR level (dB) -10 -5 0 5 10 15 20

-10 176 24
-5 197

0 192

5 200

10 200

15 1 197 2
20 46 154

Table 5.6: SNR estimation of signals modulated with QPSK modulation

Simulated Deduced SNR level (dB)
SNR level (dB) -10 -5 0 5 10 15 20

-10 173 27
-5 20 179

0 187

5 200

10 200

15 42 158

20 144 56
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Table 5.7: SNR estimation of signals modulated with QM16 modulation

Simulated Deduced SNR level (dB)
SNR level (dB) -10 -5 0 5 10 15 20

-10 180 20
-5 62 132

0 11 176

5 2 198

10 197

15 145 53

20 15 180 0

Table 5.8: SNR estimation of signals modulated with QM64 modulation

Simulated Deduced SNR level(dB)
SNR level (dB) -10 -5 0 5 10 15 20

-10 179 20
-5 73 123

0 21 169

5 1 198

10 187

15 145 36

20 24 157 0

66



• The sum of the estimated signals per row does not always add up to the total

trials, which means that the estimator fails to assign an SNR level to a number

of test signals.

• In most of the cases where the SNR level is not estimated correctly, the answer

provided by the estimator is that of a level adjacent to the actual SNR level.

Also, most incorrect estimations are of a lower value rather than a higher one.

This is no coincidence, since the estimator always chooses the lowest SNR level

when more than one level is possible.

These failures are primarily due to structural weaknesses, non-considered cases, and

imperfect conditional statements in the four branching trees used in the estimator.

Therefore, further adjustments to the branching trees are needed, and corrections

could lead to a better estimator performance.

Overall, the performance of the SNR estimator is satisfactory in that the esti-

mation does not assume any knowledge of the nature or existence of a signal in the

investigated AWGN channel. The estimator introduced here is unique in that most

estimators introduced in literature are application specific models [15], and therefore

most of them require some knowledge of the signals present in the considered channels.

A weakness of the proposed estimator is that it is channel dependent model.

Any variations in the type of noise (colored vs. AWGN), the number of signals present

in the channel, and the type of possible modulated signals require an overhaul of all

four branching trees.

5.1.2 Modulation classification. Since the features introduced by Azzouz

and Nandy [1] in their DMRA algorithm are the same ones used here for simulation

of the MDCA algorithm, it is pertinent to first present the performance achieved by

Azzouz and Nandy not for comparison purposes but for use as a reference. Tables 5.9

and 5.10 show the performance of the DMRA algorithm at SNR levels of 15dB and

10dB.
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Table 5.9: Confusion matrix of the DMRA algorithm at SNR = 15dB, as published
by Azzouz and Nandy [1]

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK QAM16 QAM64

FSK2 199 1
FSK4 1 197 2
ASK2 198 2
ASK4 200

BPSK 1 199

QPSK 2 198

QAM16 NA

QAM64 NA

Table 5.10: Confusion matrix of the DMRA algorithm at SNR = 10dB, as published
by Azzouz and Nandy [1]

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK QAM16 QAM64

FSK2 199 1
FSK4 1 197 2
ASK2 198 2
ASK4 200

BPSK 1 199

QPSK 2 198

QAM16 NA

QAM64 NA
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Tables 5.11 through 5.17 show the results of the MDCA algorithm as simulated

in a two layer setup (8/3), where 8 refers to the rank of the pages in the first layer

and 3 refers to the rank of the pages in the second layer.

Table 5.11: Confusion matrix of the MDCA (8/3) at SNR = 20dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK QAM16 QAM64

FSK2 184 3 13
FSK4 6 194

ASK2 193

ASK4 1 199

BPSK 200

QPSK 186 14
QAM16 1 44 155
QAM64 11 189

Table 5.12: Confusion matrix of the MDCA (8/3) at SNR = 15dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK QAM16 QAM64

FSK2 184 6 10
FSK4 6 194

ASK2 194 6
ASK4 3 197

BPSK 200

QPSK 197 3
QAM16 115 85
QAM64 45 155

5.2 Observations and Analysis

Unlike the the performance of the Azzouz and Nandi DMRA algorithm, which

is particularly strong and consistent, the results from the MDCA algorithm varied

widely across the SNR ranges as well as between modulations types.

Several observations can be made from Tables 5.11 to 5.17:
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Table 5.13: Confusion matrix of the MDCA (8/3) at SNR = 10dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK QAM16 QAM64

FSK2 183 10 7
FSK4 4 196

ASK2 192 8
ASK4 4 196

BPSK 200

QPSK 189 3 8
QAM16 106 94
QAM64 54 146

Table 5.14: Confusion matrix of the MDCA (8/3) at SNR = 5dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK QAM16 QAM64

FSK2 139 30 31
FSK4 25 174

ASK2 160 40
ASK4 21 179

BPSK 200

QPSK 195 5
QAM16 148 52
QAM64 77 123

Table 5.15: Confusion matrix of the MDCA (8/3) at SNR = 0dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK QAM16 QAM64

FSK2 142 9 45 4
FSK4 14 184 2
ASK2 154 46
ASK4 21 179

BPSK 200

QPSK 1 192 7
QAM16 114 86
QAM64 59 141
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Table 5.16: Confusion matrix of the MDCA (8/3) at SNR = -5dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK QAM16 QAM64

FSK2 123 6 34 25 12
FSK4 3 197 2
ASK2 146 54
ASK4 38 162

BPSK 199 1
QPSK 4 143 46 7
QAM16 1 20 113 66
QAM64 1 13 88 98

Table 5.17: Confusion matrix of the MDCA (8/3) at SNR = -10dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK QAM16 QAM64

FSK2 44 36 42 46 32
FSK4 28 147 2 14 9
ASK2 147 53
ASK4 54 146

BPSK 199 1
QPSK 6 2 68 43 81
QAM16 8 5 47 49 91
QAM64 9 2 43 52 94
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• The performance of the classifier in distinguishing between QAM16 and QAM64

is not good even at high SNR levels.

• Classification is performed below the 10dB limit of the DMRA algorithm. The

performance of the classifier remains good for the PSK family to 0dB SNR, and

it degrads to an average of 80% for the other modulations.

• Most classification errors occurr within modulation families. With the exception

of the FSK2, all other modulations almost remained free of cross-modulation

errors to -5dB SNR.

Some achievements using no features other than the ones used in the DMRA are

• Classification is performed below the 10dB limit of the DMRA algorithm. Here,

FSK4 and QPSK are largely well classified even at 0dB , while performance for

the BPSK case remains almost perfect to -10dB.

• Two modulations, QAM16 and QAM64, which were not considered by Az-

zouz [1] are classified. Although not always perfectly identified as independent

modulations, they are rarely confused for other than QAM modulations. Table

5.18 shows the instances where each of these modulations is identified to belong

to the QAM family (i.e. either QAM16 or QAM64.)

Table 5.18: QAM64 and QAM16 classified as QAM (200 trials per modulation per
SNR level)

Signals deduced as a QAM
SNR (dB) -10 -5 0 5 10 15 20

QAM16 140 179 200 200 200 200 199

QAM64 146 186 200 200 200 200 200

5.3 Using only six modulation

It is difficult to compare the MDCA algorithm to DMRA, because the later is

tailored specifically for the six modulations it classifies and for SNR levels larger than

10dB. However, the performance of the MDCA in a more restricted environment, such
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as one that ignores the QAM modulation family, is investigated. Tables 5.19 and 5.20

show the results of the aforementioned implementation for the 15dB and 10dB SNR

levels. The simulation results for the other SNR levels are included in Appendix B.

Table 5.19: Confusion matrix of the MDCA (6/3)at SNR = 15dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 179 9 12
FSK4 13 187

ASK2 193 7
ASK4 3 197

BPSK 200

QPSK 200

Table 5.20: Confusion matrix of the MDCA (6/3) at SNR = 10dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 171 17 12
FSK4 5 195

ASK2 193 7
ASK4 9 191

BPSK 200

QPSK 200

It is clear that the results provided in Tables 5.19 and 5.20 show an overall

improvement and a minor setback in the case of FSK2.

5.4 Classification at different Dimensions

One of the objectives of this research is to show the advantages of classifying

modulated signals in high dimensional spaces. In theory, the higher the classification

space the better the results. Unfortunately, this statement only holds true if every

used dimension adds a degree of distinction between classes. In our case, the use of

five features allows classification in a space of a maximum of four dimensions, and

hence, a simulated classification in one, two, three and four dimensional spaces is

possible and also warranted. Table 5.21 provides the simulation results of a set of test
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signals classified in two, three and four dimensional spaces at 10dB SNR. The results

of the remaining SNR levels are included in Appendix B.

Table 5.21: Confusion matrix of the MDCA (6/3) at SNR = 10dB

Simulated Deduced Modulation Type (2D classification)
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 181 16 3
FSK4 10 190

ASK2 191 9
ASK4 8 192

BPSK 200

QPSK 2 198

(3D classification)
FSK2 171 17 12
FSK4 5 195

ASK2 193 7
ASK4 9 191

BPSK 200

QPSK 200

(4D classification)
FSK2 177 8 15
FSK4 5 195

ASK2 197

ASK4 12 188

BPSK 200

QPSK 200

Overall the results are quite similar across all three spaces, but in specific cases

there is fluctuation in performance. In some cases classifications in 2D outperform

those in 3D and 4D for the same modulation type. Consequently, one might be

tempted to dismiss multi-dimensionality as a useful tool. However, to understand

this unintuitive behavior the information used to generate the classification hyper-

planes must be examined. Indeed, reviewing the eigenvalues of the H matrices (Equa-

tion 3.12), for which the eigenvectors that define the Fisher hyper-planes where clas-

sification is performed provides several clues. Knowing that the eigenvalues of the

H matrix provide a relative estimate of the spread of input data points along their

corresponding eigenvectors, one can conclude the following from Table 5.22:
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Table 5.22: The eigenvalues of the 7 H matrices that provide the eigenvectors which
in turn define the 7 level-one Fisher hyper-planes used in the (8/3) set of modulations

Ranked The eigenvalues at SNR levels (dB)
eigenvalues -10 -5 0 5 10 15 20

λ1 0.3394 0.6260 1.4785 1.9587 1.7598 1.3389 1.3546
λ2 0.0193 0.0354 0.0253 0.0685 0.1264 0.0945 0.0923
λ3 0.0047 0.0151 0.0189 0.0269 0.0371 0.0454 0.0490
λ4 0.0001 0.0019 0.0092 0.0067 0.0102 0.0038 0.0059

• The first two eigenvalues are most significant in magnitude, while the third and

the fourth eigenvalues are almost always marginal, which means that most of the

separation between modulations is provided in the first two dimensions, while

the last two provide less separation.

• In general the eigenvalues decrease in magnitude as the SNR level decreases,

which explains the increasing collisions between modulations for low SNR

Thus the eigenvalues of the H matrices constructed from the given five dimensional

data, which in turn correspond to the five features used, reveal that in most cases

there is little to gain from performing classification in a space with more than two

axes.

5.5 Top three possible modulations

The MDCA algorithm, as it is implemented in all simulations, provides not only

the most likely modulation to match the signal of interest but also a list of all the

modulations in its database in a ranked order of possible correct answers. Table 5.23

shows the frequency with which the signal of interest is identified within the top three

possible answers.
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Table 5.23: Confusion matrix of the MDCA with ranks(6/3) showing the frequency with which the actual modulation is
classified within the top three choices.

Simulated Ranked first Ranked second Ranked third TOTAL

Modulation FSK2 FSK4 ASK2 ASK4 BPSK QPSK FSK2 FSK4 ASK2 ASK4 BPSK QPSK FSK2 FSK4 ASK2 ASK4 BPSK QPSK

Type SNR = 20dB

FSK2 178 8 14 200

FSK4 193 7 0 200

ASK2 192 8 0 200

ASK4 198 2 0 200

BPSK 200 0 0 200

QPSK 197 2 1 200

SNR = 15dB

FSK2 177 14 0 200

FSK4 181 19 0 200

ASK2 192 8 1 200

ASK4 191 7 0 200

BPSK 200 0 0 200

QPSK 199 0 1 200

SNR = 10dB

FSK2 181 19 0 200

FSK4 190 10 0 200

ASK2 191 8 1 200

ASK4 192 8 0 200

BPSK 200 0 0 200

QPSK 198 2 0 200

SNR = 5dB

FSK2 152 44 4 200

FSK4 168 24 8 200

ASK2 156 44 0 200

ASK4 174 26 0 200

BPSK 200 0 0 200

QPSK 197 2 1 200

SNR = 0dB

FSK2 158 38 2 198

FSK4 185 13 2 200

ASK2 151 49 0 200

ASK4 176 0 0 200

BPSK 200 0 0 200

QPSK 193 0 0 200

SNR = -5dB

FSK2 149 0 0 188

FSK4 199 1 0 200

ASK2 145 45 10 200

ASK4 163 37 0 200

BPSK 199 1 0 200

QPSK 185 0 0 200

SNR = -10dB

FSK2 72 34 10 116

FSK4 143 33 14 190

ASK2 145 50 0 195

ASK4 151 49 0 200

BPSK 199 0 1 200

QPSK 177 0 22 199
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VI. Conclusion

6.1 Summary

Automatic modulation recognition has concerned a number of researchers for

almost three decades, but the quest for a reliable and fast algorithm remains elusive.

Work done so far has been limited in both scope and the diversity of approaches.

Though the traditional signal processing and pattern recognition techniques have

not yet been exhaustively evaluated, they also haven not been shown to work in

environments other than controlled AWGN channels, which usually contain only one

signal (the one being evaluated).

This research attempts to develop a platform that has the potential to perform

as well as most of the work so far achieved while staying flexible for adaption to future

breakthroughs in the field of modulation recognition. This objective is addressed by

considering the nature of classification in a pattern recognition mode and focusing

the working mechanisms of the platform to accommodate this nature. Classification

of modulated signals with unknown parameters using pattern recognition schemes

can not be conducted separately from the environment of the signals. Thus, for

each possible environment one must expect a different signature and small or large

deviations from the norm of the signals in consideration, so a thorough investigation

of the behavior of signals in each environment is required. Thus the objective of the

this effort is building unique and representative models of the signals in each plausible

environment. None of the techniques proposed in the literature can characterize every

possible modulation. Therefore, the capabilities and limitations of all features that

can be used in a global classifier must be studied and integrated carefully in the

classification process.

The MDCA algorithm answers these challenges with very simple approaches.

First, the database of the algorithm is in reality a reference library of environments

with different parameters which happen to contain modulated signals. Second, the

MDCA’s does not use any features directly in its core processes, but rather uses

available features first in building the database and then in reference for classification.
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The results of the implementations of the MDCA algorithm, are quite satisfac-

tory. Indeed, with only five features which previously had a limited range of use, the

MDCA extended useful classification to lower SNR levels and added to the modulation

classes that are classifiable.

6.2 Recommendation for Future Research

Much more work is needed to improve the MDCA, and even more efforts are

needed to improve the quality and size of its database. Some of the step that may be

useful to achieve this goal are

• The existing features need to be surveyed and included as potential inputs to

the MDCA, which can increase in the classification accuracy

• The quality of the surveyed features need to be assessed versus channel param-

eters for the considered modulations. The sensitivity of the features to changes

in the channel parameters, and the robustness of the features (i.e., the consis-

tency of the signatures they produce for the modulations as parameters change)

is valuable information in need of integration in the classification process.

• The capability of the MDCA to classify modulations not available in its database

as “unknown” saves time and effort. This can be achieved by declaring the

empty areas in the Fisher hyper-planes as zones for unknown modulations, or

by setting threshold Mahalanobis distances below which the projections can no

longer be considered as possible modulations.
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Appendix A. Special Case

This Appendix covers the results of a simulation run of 12,800 test signals using

a (8/3) model. There is a major difference between this set of simulations and the ones

presented previously in that both the training and test signals are generated using the

single carrier frequency of 5kHz. This procedure is used because it became apparent

that the extracted features are sensitive to the frequency of the carrier signal, and

hence it became necessary to consider the carrier frequency as one of the parameters

to fix when generating the pages of the database. The results of this simulation

are perfect for all the modulations, except ASK, at SNR levels down to 5dB. The

relatively poorer performance of ASK is because it is one of the modulation types that

lacks an implementation standard. In a simulation rerun where the ASK signals are

implemented differently (magnitudes tripled) the results are perfect down to -10dB.

The results of the second simulation are not presented because the changes applied

to the ASK modulated signals fundamentally modified their signatures. Hence, it is

inappropriate to compare the results of the second simulation to previous simulations.

The figures in this appendix are of the first level pages of all the SNR levels

previously considered plus a -20dB implementation. The -20dB case is added because

even at that level the ASK modulated signals exhibit a different behavior than the

rest. While all constellation merge toward the center (i.e., behaving like pure noise

and becoming undistinguishable from one another) the convergence of the ASK con-

stellations is delayed and does not resolve until the -30dB SNR level is reached. All

the 2D planes are shown in a fixed reference plane to highlight the convergence process

toward the center, while the 3D hyper-planes are shown from angles that best present

the separation between classes. Furthermore, one can clearly see improvements as the

classification space is increased from two to four dimensions.

Overall, the results from this set of simulations are better than previous exper-

iments.
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Table A.1: Confusion matrix of the MDCA (8/3), single carrier model, at SNR =
20dB

Simulated Deduced Modulation Type (2D classification)
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK QAM

FSK2 199 1
FSK4 200

ASK2 190 10
ASK4 1 199

BPSK 200

QPSK 4 195 1
QAM16 200

QAM64 200

(3D classification)
FSK2 200

FSK4 200

ASK2 190 10
ASK4 2 198

BPSK 200

QPSK 200

QAM16 200

QAM64 200

(4D classification)
FSK2 200

FSK4 200

ASK2 191 9
ASK4 2 198

BPSK 200

QPSK 200

QAM16 200

QAM64 200
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(a)

(b)

Figure A.1: First level page with SNR = 20dB
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Table A.2: Confusion matrix of the MDCA (8/3), single carrier model, at SNR =
15dB

Simulated Deduced Modulation Type (2D classification)
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK QAM

FSK2 200

FSK4 200

ASK2 191 9
ASK4 1 199

BPSK 200

QPSK 200

QAM16 200

QAM64 200

(3D classification)
FSK2 200

FSK4 200

ASK2 192 8
ASK4 3 197

BPSK 200

QPSK 200

QAM16 200

QAM64 200

(4D classification)
FSK2 200

FSK4 200

ASK2 193 7
ASK4 2 198

BPSK 200

QPSK 200

QAM16 200

QAM64 200
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(a)

(b)

Figure A.2: First level page with SNR = 15dB
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Table A.3: Confusion matrix of the MDCA (8/3), single carrier model, at SNR =
10dB

Simulated Deduced Modulation Type (2D classification)
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK QAM

FSK2 200

FSK4 200

ASK2 187 13
ASK4 11 189

BPSK 200

QPSK 200

QAM16 200

QAM64 200

(3D classification)
FSK2 200

FSK4 200

ASK2 191 9
ASK4 10 190

BPSK 200

QPSK 200

QAM16 200

QAM64 200

(4D classification)
FSK2 200

FSK4 200

ASK2 191 9
ASK4 8 192

BPSK 200

QPSK 200

QAM16 200

QAM64 200
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(a)

(b)

Figure A.3: First level page with SNR = 10dB
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Table A.4: Confusion matrix of the MDCA (8/3), single carrier model, at SNR =
5dB

Simulated Deduced Modulation Type (2D classification)
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK QAM

FSK2 200

FSK4 200

ASK2 187 13
ASK4 9 191

BPSK 200

QPSK 200

QAM16 200

QAM64 200

(3D classification)
FSK2 200

FSK4 200

ASK2 187 13
ASK4 8 192

BPSK 200

QPSK 200

QAM16 200

QAM64 200

(4D classification)
FSK2 200

FSK4 200

ASK2 192 8
ASK4 13 187

BPSK 200

QPSK 200

QAM16 200

QAM64 200
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(a)

(b)

Figure A.4: First level page with SNR = 5dB
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Table A.5: Confusion matrix of the MDCA (8/3), single carrier model, at SNR =
0dB

Simulated Deduced Modulation Type (2D classification)
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK QAM

FSK2 166 1 33
FSK4 200

ASK2 169 31
ASK4 30 170

BPSK 200

QPSK 14 182 4
QAM16 200

QAM64 200

(3D classification)
FSK2 158 1 41
FSK4 200

ASK2 172 28
ASK4 28 172

BPSK 200

QPSK 3 188 9
QAM16 200

QAM64 200

(4D classification)
FSK2 154 1 44 1
FSK4 200

ASK2 171 29
ASK4 26 174

BPSK 200

QPSK 1 188 11
QAM16 200

QAM64 200
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(a)

(b)

Figure A.5: First level page with SNR = 0dB
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Table A.6: Confusion matrix of the MDCA (8/3), single carrier model, at SNR =
-5dB

Simulated Deduced Modulation Type (2D classification)
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK QAM

FSK2 46 7 95 52
FSK4 4 159 12 25
ASK2 151 49
ASK4 39 161

BPSK 200

QPSK 9 115 76
QAM16 1 4 13 182

QAM64 1 4 195

(3D classification)
FSK2 74 11 66 49
FSK4 11 173 16
ASK2 150 50
ASK4 34 166

BPSK 199 1
QPSK 9 1 106 84
QAM16 1 10 189

QAM64 1 199

(4D classification)
FSK2 58 11 68 63
FSK4 10 173 17
ASK2 139 61
ASK4 29 171

BPSK 199 1
QPSK 7 1 95 97
QAM16 10 190

QAM64 200
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(a)

(b)

Figure A.6: First level page with SNR = -5dB
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Table A.7: Confusion matrix of the MDCA (8/3), single carrier model, at SNR =
-10dB

Simulated Deduced Modulation Type (2D classification)
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK QAM

FSK2 10 13 1 57 119
FSK4 18 28 48 106
ASK2 155 45
ASK4 51 149

BPSK 198 2
QPSK 3 1 71 125
QAM16 1 4 51 124

QAM64 2 4 1 47 146

(3D classification)
FSK2 11 44 1 40 104
FSK4 8 124 13 57
ASK2 157 43
ASK4 53 147

BPSK 198 2
QPSK 6 9 1 53 131
QAM16 3 15 45 137

QAM64 1 11 1 39 148

(4D classification)
FSK2 10 43 1 37 109
FSK4 7 122 18 53
ASK2 158 42
ASK4 55 145

BPSK 199 1
QPSK 3 7 55 135
QAM16 2 14 45 139

QAM64 1 11 1 41 146
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(a)

(b)

Figure A.7: First level page with SNR = -10dB
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Table A.8: Confusion matrix of the MDCA (8/3), single carrier model, at SNR =
-20dB

Simulated Deduced Modulation Type (2D classification)
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK QAM

FSK2 0 4 74 31 91
FSK4 2 66 44 88
ASK2 143 56 1
ASK4 84 116

BPSK 2 122 31 45
QPSK 3 67 44 86
QAM16 1 3 79 36 81

QAM64 1 1 89 29 74

(3D classification)
FSK2 1 2 78 41 78
FSK4 1 1 70 42 86
ASK2 141 58 1
ASK4 88 112

BPSK 2 132 28 38
QPSK 1 77 52 70
QAM16 82 47 71

QAM64 95 46 59

(4D classification)
FSK2 0 4 83 39 74
FSK4 1 78 46 75
ASK2 138 61 1
ASK4 84 116

BPSK 1 141 26 32
QPSK 5 81 52 62
QAM16 5 93 45 57

QAM64 2 99 37 62
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(a)

(b)

Figure A.8: First level page with SNR = 20dB
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Appendix B. Additional Results

More of the results of the simulations introduced in Chapter 5 are provided in

this appendix.

B.1 Two layer model with ranks 6 and 3.

Tables A.1 to A.5 show the results for the model built around two layers of

ranks six and three.

Table B.1: Confusion matrix of the MDCA (6/3) at SNR = 20dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 174 4 22
FSK4 6 194

ASK2 192 8
ASK4 3 197

BPSK 200

QPSK 200

Table B.2: Confusion matrix of the MDCA (6/3)at SNR = 5dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 134 34 32
FSK4 22 175 3
ASK2 154 46
ASK4 26 174

BPSK 200

QPSK 200

B.2 Two layer model with ranks 6 and 2.

This section presents the simulation results of a two layer model with ranks six

and two. They are intended to show that having fewer modulation in lower levels

can improve classification results. Tables B.6 to B.12 show that the substituting

the 3-class pages with 2-class pages in the second layer does not significantly improve
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Table B.3: Confusion matrix of the MDCA (6/3) at SNR = 0dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 145 14 41
FSK4 12 188 2
ASK2 148 52
ASK4 25 175

BPSK 200

QPSK 1 199

Table B.4: Confusion matrix of the MDCA (6/3) at SNR = -5dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 143 8 49
FSK4 1 199

ASK2 135 65
ASK4 35 165

BPSK 199 1
QPSK 6 194

Table B.5: Confusion matrix of the MDCA (6/3) at SNR = -10dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 79 30 91
FSK4 50 141 9
ASK2 142 58
ASK4 46 154

BPSK 199 1
QPSK 24 175

Table B.6: Confusion matrix of the MDCA with two layers (6/2)at SNR = 20dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 169 5 26
FSK4 5 193 2
ASK2 193 7
ASK4 2 198

BPSK 200

QPSK 200
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Table B.7: Confusion matrix of the MDCA with two layers (6/2)at SNR = 15dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 187 3 10
FSK4 11 189

ASK2 196 4
ASK4 10 190

BPSK 200

QPSK 1 199

Table B.8: Confusion matrix of the MDCA with two layers (6/2)at SNR = 10dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 176 8 16
FSK4 6 194 2
ASK2 195 5
ASK4 7 193

BPSK 200

QPSK 200

Table B.9: Confusion matrix of the MDCA with two layers (6/2)at SNR = 5dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 124 32 44
FSK4 24 175 1
ASK2 154 46
ASK4 23 177

BPSK 200

QPSK 1 199

Table B.10: Confusion matrix of the MDCA with two layers (6/2)at SNR = 0dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 144 10 46
FSK4 15 185 2
ASK2 149 51
ASK4 19 181

BPSK 200

QPSK 3 197

98



Table B.11: Confusion matrix of the MDCA with two layers (6/2)at SNR = -5dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 139 7 54
FSK4 1 199 2
ASK2 141 59
ASK4 42 158

BPSK 199 1
QPSK 4 196

Table B.12: Confusion matrix of the MDCA with two layers (6/2) at SNR = -10dB

Simulated Deduced Modulation Type
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 69 30 101
FSK4 47 140 13
ASK2 143 57
ASK4 46 154

BPSK 199 1
QPSK 20 1 179

results. The improvements are marginal in most cases, while the remaining cases

show no improvement or even some degradation. However, there is a reduction of the

within family errors (modulations of same family, for example FSK2 and FSK4.)

B.3 Classification using different dimensions

This section provides the remainder of results from Section 5.4.
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Table B.13: Confusion matrix of the MDCA (6/3) at SNR = 20dB

Simulated Deduced Modulation Type (2D classification)
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 178 11 11
FSK4 7 193

ASK2 192 8
ASK4 2 198

BPSK 200

QPSK 1 2 197

(3D classification)
FSK2 174 4 22
FSK4 6 194

ASK2 192 8
ASK4 3 197

BPSK 200

QPSK 200

(4D classification)
FSK2 174 3 23
FSK4 5 194 1
ASK2 192 8
ASK4 3 197

BPSK 200

QPSK 200

100



Table B.14: Confusion matrix of the MDCA (6/3) at SNR = 15dB

Simulated Deduced Modulation Type (2D classification)
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 177 17 6
FSK4 19 181

ASK2 192 8
ASK4 9 191

BPSK 200

QPSK 1 199

(3D classification)
FSK2 179 9 12
FSK4 13 187

ASK2 193 7
ASK4 3 197

BPSK 200

QPSK 200

(4D classification)
FSK2 180 4 16
FSK4 8 192

ASK2 194 6
ASK4 7 193

BPSK 200

QPSK 200
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Table B.15: Confusion matrix of the MDCA (6/3) at SNR = 5dB

Simulated Deduced Modulation Type (2D classification)
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 152 28 20
FSK4 30 168 2
ASK2 156 44
ASK4 26 174

BPSK 200

QPSK 3 197

(3D classification)
FSK2 134 34 32
FSK4 22 175 3
ASK2 154 46
ASK4 26 174

BPSK 200

QPSK 200

(4D classification)
FSK2 136 31 33
FSK4 22 175 3
ASK2 155 45
ASK4 25 175

BPSK 200

QPSK 200
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Table B.16: Confusion matrix of the MDCA (6/3) at SNR = 0dB

Simulated Deduced Modulation Type (2D classification)
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 158 14 28
FSK4 15 185

ASK2 151 49
ASK4 24 176

BPSK 200

QPSK 7 193

(3D classification)
FSK2 145 14 41
FSK4 12 188

ASK2 148 52
ASK4 25 175

BPSK 200

QPSK 1 199

(4D classification)
FSK2 144 14 42
FSK4 13 187

ASK2 148 52
ASK4 25 175

BPSK 200

QPSK 1 199
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Table B.17: Confusion matrix of the MDCA (6/3) at SNR = -5dB

Simulated Deduced Modulation Type (2D classification)
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 149 7 44
FSK4 1 199

ASK2 145 55
ASK4 37 163

BPSK 199 1
QPSK 15 185

(3D classification)
FSK2 143 8 49
FSK4 1 199

ASK2 135 65
ASK4 35 165

BPSK 199 1
QPSK 6 194

(4D classification)
FSK2 144 8 48
FSK4 1 199

ASK2 138 62
ASK4 35 165

BPSK 199 1
QPSK 6 194
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Table B.18: Confusion matrix of the MDCA (6/3) at SNR = -10dB

Simulated Deduced Modulation Type (2D classification)
Modulation Type FSK2 FSK4 ASK2 ASK4 BPSK QPSK

FSK2 72 33 95
FSK4 46 143 11
ASK2 145 55
ASK4 49 151

BPSK 199 1
QPSK 21 1 1 177

(3D classification)
FSK2 79 30 91
FSK4 50 141

ASK2 142 58
ASK4 46 154

BPSK 199 1
QPSK 24 1 175

(4D classification)
FSK2 78 30 92
FSK4 50 141

ASK2 141 59
ASK4 46 154

BPSK 199 1
QPSK 23 1 176
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Appendix C. Additional Figures

To understand the results provided in the tables of Chapter V, visualization of the

model generated (.i.e, the pages of the database) can give insight into the behavior

of the modulations, or more appropriately the features extracted from them as a

function of the SNR levels in their respective Fisher hyper-planes. This exercise is

crucial because it allows the user to identify weaknesses of the model prior to any

testing or field use. The most important elements are the instances where collisions

between classes occur. Identifying these overlaps assist in

• Assessing the quality of the features used in the model

• Identifying when and for what modulations a different set of features

are necessary for classification

• Predicting the reliability of the model

• Identifying fixes for problem cases

Only the Fisher hyper-planes of the first level pages from each of the models

simulated here are presented in this appendix.
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(a)

(b)

Figure C.1: First level page with SNR = 15dB
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(a)

(b)

Figure C.2: First level page with SNR = 10dB
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(a)

(b)

Figure C.3: First level page with SNR = 05dB
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(a)

(b)

Figure C.4: First level page with SNR = 0dB

110



(a)

(b)

Figure C.5: First level page with SNR = -5dB
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(a)

(b)

Figure C.6: First level page with SNR = -10dB
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Appendix D. Matlab Code

This appendix includes two examples of the Matlabr code used in this thesis.

D.1 First Example

The SNR estimation module is a set of four simple branching tree processes.

Due to the simplicity of the process, it is more efficient to provide the function code

than to graphically describe each branching tree.

Listing D.1: The Matlabr implementation of the SNR estimation process.
(appendix4/estimateSNR.m)

1

function [X] = estimate_SNR(features)

%+---------------------------------------------------------+

%| function estimates the SNR level ranges of a signal for |

%| each input feature. |

6 %| input: "features" struct contains |

%| .absolute amplitude feature |

%| .absolute frequency feature |

%| .absolute phase feature |

%| .direct phase feature |

11 %| output: "X" struct contains four vectors each is (1x7) |

%| corresponding to the 7 SNR ranges (1: possible , |

%| 0: not possible) as derived from each of the |

%| given features. |

%| version: 1.7 |

16 %+---------------------------------------------------------+

%==================== Absolute phase range =================

if ( 1.47 < features.abs_phase) || (features.abs_phase < 0.055)

X.AP = [0 0 0 0 0 0 1];

21 elseif ( 1.415 < features.abs_phase) || (features.abs_phase < ...

0.09)

X.AP = [0 0 0 0 0 1 1];

elseif ( 1.315 < features.abs_phase) || (features.abs_phase < ...

0.17)

X.AP = [0 0 0 0 1 1 1];

elseif ( 1.2 < features.abs_phase) || (features.abs_phase < 0.3)

26 X.AP = [0 0 0 1 1 1 1];

elseif ( 1.06 < features.abs_phase) || (features.abs_phase < 0.56)

X.AP = [0 0 1 1 1 1 1];

elseif ( 0.98 < features.abs_phase) || (features.abs_phase < 0.76)

X.AP = [0 1 1 1 1 1 1];

31 else

X.AP = [1 1 1 1 1 1 1];

end

%================= Absolute amplitude range =================
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36 if ( 0.3115 < features.abs_amp)

X.AA = [1 0 0 0 0 0 0];

elseif ( 0.304 < features.abs_amp)

X.AA = [1 1 0 0 0 0 0];

if ( 0.306 > features.abs_amp)

41 X.AA = [0 1 0 0 0 0 0];

end

elseif ( 0.287 < features.abs_amp)

X.AA = [1 1 1 0 0 0 0];

if ( 0.304 > features.abs_amp)

46 X.AA = [0 1 1 0 0 0 0];

elseif ( 0.298 > features.abs_amp)

X.AA = [0 0 1 0 0 0 0];

end

elseif ( 0.26 < features.abs_amp)

51 X.AA = [1 1 1 1 0 0 0];

if ( 0.287 > features.abs_amp)

X.AA = [0 0 1 1 0 0 0];

elseif ( 0.27 > features.abs_amp)

X.AA = [0 0 0 1 0 0 0];

56 end

elseif ( 0.206 < features.abs_amp)

X.AA = [1 1 1 1 1 1 1];

if ( 0.26 > features.abs_amp)

X.AA = [0 0 0 1 1 1 1];

61 if ( 0.243 < features.abs_amp)

X.AA = [0 0 0 1 1 0 0];

end

end

elseif ( 0.206 > features.abs_amp)

66 X.AA = [0 0 0 0 1 1 1];

if ( 0.13 > features.abs_amp)

X.AA = [0 0 0 0 0 1 1];

elseif ( 0.08 > features.abs_amp)

X.AA = [0 0 0 0 0 0 1];

71 end

end

%==================== Direct phase range ====================

76 if ( 2.2 < features.dir_phase) || (features.dir_phase < 0.2)

X.DP = [0 0 0 0 1 1 1];

elseif ( 2.12 < features.dir_phase) || (features.dir_phase < 0.4)

X.DP = [0 0 0 1 1 1 1];

elseif ( 2 < features.dir_phase) || (features.dir_phase < 0.75)

81 X.DP = [0 0 1 1 1 1 1];

elseif ( 1.86 < features.dir_phase) || (features.dir_phase < 1.2)

X.DP = [0 1 1 1 1 1 1];

else

X.DP = [1 1 1 1 1 1 1];

86 end
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%=============== Absolute afrequency range ==================

if (features.abs_freq < 7)

X.AF = [0 0 0 0 0 0 1];

91 elseif (features.abs_freq < 13)

X.AF = [0 0 0 0 0 1 1];

elseif (features.abs_freq < 32)

X.AF = [0 0 0 0 1 1 1];

elseif (features.abs_freq < 60)

96 X.AF = [0 0 0 1 1 1 1];

if ( 40 < features.abs_freq)

X.AF = [0 0 0 1 0 0 0];

end

101 elseif (features.abs_freq > 60)

X.AF = [1 1 1 0 0 0 0];

if (features.abs_freq < 88)

X.AF = [0 0 1 0 0 0 0];

elseif (features.abs_freq < 91)

106 X.AF = [0 1 1 0 0 0 0];

elseif (features.abs_freq > 91)

X.AF = [1 1 0 0 0 0 0];

if ( 100 < features.abs_freq)

X.AF = [0 1 0 0 0 0 0];

111 end

end

end

D.2 Second Example

To implement the simulation of the 12800 test signals, which were generated at

the fixed carrier frequency 5kHz, SNR levels (-20dB, -10dB, -5dB, 0dB, 5dB, 10dB,

15dB, 20dB,) the DMRA algorithm was modified where the algorithm’s core fixed for

two layers then put in the concatenated loops necessary to test every signals.

Listing D.2: The Matlabr code to simulate the working of a two layer (8/3) classifier
which generate the confusion matrices presented in Appendix C.
(appendix4/SimulationBISoneFC.m)

1

%+---------------------------------------------------------+

%| Simulation routine to generate the confusion matrices |

%| for the eight modulations using a two level (8/3) |

%| classifier |

6 %+---------------------------------------------------------+

clear all

clc
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11 % ================================================================%

% all the possible combinations of 3 modulations out of 8

combinations(:,:,1) =[1 2 3; 1 2 4; 1 2 5; 1 2 6; 1 2 7; 1 2 8;...

1 3 4; 1 3 5; 1 3 6; 1 3 7; 1 3 8; 1 4 5;...

1 4 6; 1 4 7; 1 4 8; 1 5 6; 1 5 7; 1 5 8;...

16 1 6 7; 1 6 8; 1 7 8];

combinations(:,:,2) =[2 1 3; 2 1 4; 2 1 5; 2 1 6; 2 1 7; 2 1 8;...

2 3 4; 2 3 5; 2 3 6; 2 3 7; 2 3 8; 2 4 5;...

2 4 6; 2 4 7; 2 4 8; 2 5 6; 2 5 7; 2 5 8;...

2 6 7; 2 6 8; 2 7 8];

21 combinations(:,:,3) =[3 2 1; 3 2 4; 3 2 5; 3 2 6; 3 2 7; 3 2 8;...

3 1 4; 3 1 5; 3 1 6; 3 1 7; 3 1 8; 3 4 5;...

3 4 6; 3 4 7; 3 4 8; 3 5 6; 3 5 7; 3 5 8;...

3 6 7; 3 6 8; 3 7 8];

combinations(:,:,4) =[4 2 3; 4 2 1; 4 2 5; 4 2 6; 4 2 7; 4 2 8;...

26 4 3 1; 4 3 5; 4 3 6; 4 3 7; 4 3 8; 4 1 5;...

4 1 6; 4 1 7; 4 1 8; 4 5 6; 4 5 7; 4 5 8;...

4 6 7; 4 6 8; 4 7 8];

combinations(:,:,5) =[5 2 3; 5 2 4; 5 2 1; 5 2 6; 5 2 7; 5 2 8;...

5 3 4; 5 3 1; 5 3 6; 5 3 7; 5 3 8; 5 4 1;...

31 5 4 6; 5 4 7; 5 4 8; 5 1 6; 5 1 7; 5 1 8;...

5 6 7; 5 6 8; 5 7 8];

combinations(:,:,6) =[6 2 3; 6 2 4; 6 2 5; 6 2 1; 6 2 7; 6 2 8;...

6 3 4; 6 3 5; 6 3 1; 6 3 7; 6 3 8; 6 4 5;...

6 4 1; 6 4 7; 6 4 8; 6 5 1; 6 5 7; 6 5 8;...

36 6 1 7; 6 1 8; 6 7 8];

combinations(:,:,7) =[7 2 3; 7 2 4; 7 2 5; 7 2 6; 7 2 1; 7 2 8;...

7 3 4; 7 3 5; 7 3 6; 7 3 1; 7 3 8; 7 4 5;...

7 4 6; 7 4 1; 7 4 8; 7 5 6; 7 5 1; 7 5 8;...

7 6 1; 7 6 8; 7 1 8];

41 combinations(:,:,8) =[8 2 3; 8 2 4; 8 2 5; 8 2 6; 8 2 7; 8 2 1;...

8 3 4; 8 3 5; 8 3 6; 8 3 7; 8 3 1; 8 4 5;...

8 4 6; 8 4 7; 8 4 1; 8 5 6; 8 5 7; 8 5 1;...

8 6 7; 8 6 1; 8 7 1];

% ================================================================%

46 rootpath = [’C:\ Documents and Settings\ouail\My Documents\’...

’My Thesis\code\signals2\one_FC ’];

possible_modulations = [’FSK2’; ’FSK4’;’ASK2’; ’ASK4’;’BPSK’;...

’QPSK’;’QM16’; ’QM64’];

51 parent_dir = [ ’\FSK2\’; ’\FSK4\’;’\ASK2\’; ’\ASK4\’;...

’\BPSK\’;’\QPSK\’;’\QM16\’; ’\QM64\’];

envir_dir = [’SNR_20dB\’; ’SNR_15dB\’; ’SNR_10dB\’;...

’SNR_05dB\’;’SNR_00dB\’; ’SNR_ -5dB\’;...

56 ’SNR -10dB\’; ’SNR -20dB\’];

snr = [20 ; 15 ; 10 ; 05 ; 0 ; -5 ; -10; -20];

61 DB_path = [’C:\Documents and Settings\ouail\My Documents\’...

’My Thesis\code\test_signals\one_FC\Hyper_planes’];

116



dimenssions = [2 ,3 ,4];

tic

66 for k = 1:8

for n = 1:8

path = [rootpath parent_dir(k,:) ’OUT_files\’ envir_dir(n...

,:)];

test_signals_file_name = [’OUT_’ possible_modulations(k,:)...

...

’_’ num2str(snr(n))];

71 load([path test_signals_file_name]);

DB_name = [’Main_plane\’ num2str(snr(n),’%02d’) ’\...

main_plane’];

%load the first level page

76 load([DB_path ’\’ DB_name]);

Tally = zeros(3,8); %Re -Intializations

for i = 1:200 %

81 for y = 1:3 %for each one of the ...

dimensions 2,3,4

features.GAMMA = gammamax(i);

features.abs_phase = AP(i);

features.dir_phase = DP(i);

features.abs_amp = AA(i);

86 features.abs_freq = AF(i);

projection_coordinates = ...

project_onto_plane(features , plane , ...

dimenssions(y));

Dt.mu = Data.mu(:,1: dimenssions(y))’;

Dt.Cov = Data.Cov(1:dimenssions(y) ,1:dimenssions(y...

) ,:);

91 [modulation_rank , maha_distances] = ...

Mahalanobis(Dt , projection_coordinates);

for p = 1:3 %3 modulations with smallest

%Mahalanobis distance to ...

projection

96 first = combinations(1,1,modulation_rank(p));

for z = 1:21

second = combinations(z,2,first);

101 third = combinations(z,3,first);

level_2_DB_dir = [’level_2_planes\’ ...

num2str(snr(n),’%02d’) ’\’...

num2str(possible_modulations(first ,:),...

’%02d’)];
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106 level_2_DB_name = [possible_modulations(...

first ,:)...

’_plane_with_’ possible_modulations(...

second ,:)...

’_’ possible_modulations(third ,:)];

%load the appropriate second level page

111 load([DB_path ’\’ level_2_DB_dir ’\’ ...

level_2_DB_name]);

% project the signal on level 2 hyperplanes

level2_proj_coordinates = ...

project_onto_plane(features , level2plane ...

, dimenssions(y));

116

%get the Mahalanobis distances

Dt2.mu = level2Data.mu(:,1: dimenssions(y))...

’;

Dt2.Cov = level2Data.Cov(1:dimenssions(y)...

,1:dimenssions(y) ,:);

[level2_mod_rank , level2_maha_distances] =...

...

121 Mahalanobis(Dt2 , level2_proj_coordinates...

);

%define the actual set of modulations and ...

store in

%RANK matrix

RANK(z,:,p) = [combinations(z,...

level2_mod_rank(1),modulation_rank(p))...

,...

126 combinations(z,level2_mod_rank(2),...

modulation_rank(p)) ,...

combinations(z,level2_mod_rank(3),...

modulation_rank(p))];

end

end

131

[Decision(i,y)] = class_decision2(modulation_rank ,...

RANK);

end

Tally(1, Decision(i,1)) = Tally(1,Decision(i,1)) + 1;

136 Tally(2, Decision(i,2)) = Tally(2,Decision(i,2)) + 1;

Tally(3, Decision(i,3)) = Tally(3,Decision(i,3)) + 1;

end

% compile the totals of each set of tallies

141 ALL_TALLY(k,:,n) = Tally (1,:); %2D classification results

ALL_TALLY2(k,:,n) = Tally(2,:); %3D

ALL_TALLY3(k,:,n) = Tally(3,:); %4D
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end

end
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